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ABSTRACT: Fluid–structure  interaction  (FSI)  is  a
ubiquitous  physical  phenomenon  in  ocean  engineering,
which is  critical  in  the design and operations of  various
marine  structures  and  underwater  vehicles.  Especially,
in  a  low-carbon  society,  FSI  plays  a  pivotal  role  in  the
development of  hydrokinetic energy conversion devices
in  ocean  renewable  energy.  For  FSI  problems,  strong
nonlinear  interactions  between  flow  and  structures,  as
well  as  turbulent  flow  pose  significant  challenges  for
understanding  and  predicting  the  dynamics  of  the  FSI
system.  Facing  these  challenges  and  driven  by  the
motivation  of  harnessing  clean  energy  from  ocean
currents and waves, modern machine learning (ML) provides a novel and revolutionary solution to reduce the time and cost
associated  with  traditional  methodology  in  understanding  the  FSI  physics,  predicting  the  FSI  dynamics  and  control  for  the
engineering design. This paper focuses on the transformative potential  of  modern ML techniques in ocean engineering and
presents a review of the current state-of-art ML applications in analyzing complex FSI phenomena within this field. Relevant
ML  algorithms  and  techniques  are  highlighted  and  the  challenges  of  integrating  these  techniques  into  FSI  problems  are
discussed.
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1    Introduction
Fluid–structure  interaction  (FSI)  phenomena  can  be  observed
everywhere in ocean engineering. The unsteady loadings generated
from  the  interactions  between  the  flows  and  the  structures  are
crucial to determine the performance and safety of various marine
structures  such  as  rigs,  subsea  pipelines,  power  cables,  ship
propellers, autonomous underwater vehicles, and fish cages. Figure
1 shows  some  relevant  examples.  Especially,  FSI  is  a  critical
problem  in  many  leading  renewable  energy  technologies  such  as
wind,  wave,  and  tidal  energy  conversion  systems,  where  the  core
idea is to harness energy from flow-induced structural responses.

FSI involves a complex interaction between solid structures that
are  moving  and  deformed  by  the  fluid  flow  and  the  surrounding
fluid  flow  field  influenced  by  the  moving  body.  A  brief  outline  of
the  interaction  can  be  summarized  as  follows:  The  moving  and
deformed  structures  modify  the  boundary  conditions  for  fluid
flows, thereby altering the characteristics of the flow fields. In turn,

these  flows  exert  forces  on  the  structures,  arising  from  both
pressure and viscous effects,  which then drive the movements and
deformations  of  the  structures.  This  process,  known  as  the
structural  response,  creates  a  complex  interplay  between  fluid
dynamics  and  structural  integrity  in  various  spatial  and  temporal
scales.  The study of FSI systems is  an important subject,  especially
for  the  safety  and  reliability  design  of  marine  structures.  For
example,  the  flow-induced  flutter  of  highly  flexible  wind  turbine
blades strongly influences the stability and fatigue life of the blades
and  hence  the  safety  of  the  whole  wind  turbine.  The  interaction
between structures, wind, currents and waves should be considered
during  the  installation  operations  of  offshore  wind  turbines  and
subsea  pipelines.  Furthermore,  understanding  the  FSI  physics
enables  innovation  and  development  of  new  renewable  energy
converters.  For  example,  new  varieties  of  ocean  renewable  energy
devices have drawn inspiration from the movements of flapping or
oscillating wings,  following the discovery that flapping motion can
transition from a mode of  propulsion to one of  energy extraction.
This  transition hinges  on a  precise  phase  relationship between the
wing’s  pitch  and  heave  [6–8].  The  efficiency  of  the  energy
conversion  depends  on  the  surrounding  flow  influenced  by  the
prescribed  motion  patterns  and  the  shape  of  the  wings.  Gaining
information  on  the  hydrodynamic  or  aerodynamic  loads  on
structures,  structural  motions  and  deformations  as  well  as  the
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surrounding  flow  fields,  is  the  primary  objective  of  FSI  research.
From  the  industrial  perspective,  the  dynamic  response  of
engineering  structures  interacting  with  the  fluid  flow  can  be  in
practice detected only through limited measurements of the system.
The  implication  of “non-intrusive  sensing” is  combined  with  our
incomplete knowledge of the FSI system. This problem may lead to
a  fundamental  misinterpretation  of  the  underlying  physics.  For
instance,  measuring  pointwise  velocity  signals  in  the  wake  flow
behind  a  flow-induced-vibration  (FIV)  slender  structure  yields  a
sinuous time series that provides limited insight into the evolution
of wake vortices, the movement of the structure, or the overall state
of the FSI system.

This  review  paper  aims  to  bridge  these  gaps  by  exploring  the
application of machine learning (ML) in FSI research. ML emerges
as  a  promising  solution  for  enhancing  the  physical  understanding
and  dynamics  prediction  of  FSI  phenomena  and  potentially
overcoming  the  constraints  of  conventional  methodologies.  The
paper  is  organized  as  follows:  First,  an  overview  of  traditional
numerical  simulation  methodologies  for  studying  FSI  is  provided;
then, current knowledge of ML techniques within the field in terms

of  feature  detection  and  dynamics  prediction  and  control  is
highlighted;  finally,  both  the  challenges  and  opportunities  are
addressed. 

2    Traditional approaches of investigating FSI
FSI  problems  have  long  been  explored  through  experimental
studies.  However,  the  advancement  of  numerical  models  has
enhanced  the  ability  to  comprehensively  understand  flow patterns
and  structural  responses  beyond  experimental  limitations.
Generally,  the  numerical  models  of  FSI  fall  into  two  primary
categories: monolithic and partitioned approaches. The monolithic
approach  integrates  both  the  fluid  and  structural  dynamics  into  a
single  mathematical  framework,  creating  one  global  system  of
nonlinear equations for the entire FSI problem. The system is then
solved  through  a  unified  algorithm,  which  employs  an  implicit
method for  handling  the  conditions  at  the  interface.  On the  other
hand,  the  partitioned  approach  distinguishes  the  fluid  and  the
structure  into  two  computational  domains,  each  utilizing  distinct
discretization  techniques  and  solvers.  This  approach  relies  on

 

(a) Floating offshore wind turbine

(b) FIV of a subsea pipeline

(d) Autonomous underwater vehicle

(c) Ship propellor with a downstream
hydrofoil

(e) Fish cage
Figure 1    Some examples  of  FSI  systems in nature  and engineering.  (a)  a  fully  coupled aero-hydro system of  a  floating offshore  wind turbine.  Adapted from Ref.  [1]
under the CC BY 4.0 license ©2017, The Authors. (b) A flow-induced vibrating subsea pipeline. Adapted from Ref. [2] with permission ©2024, AIP Publishing. (c) Ship
propellor with a downstream hydrofoil. Adapted from Ref. [3] under the CC BY 4.0 license ©2023, The Authors. (d) Autonomous underwater vehicle. Adapted from Ref.
[4] with permission ©2024, AIP Publishing. (e) Fish cage. Adapted from Ref. [5] under the CC BY 4.0 license ©2021, The Authors.
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explicit  treatments  for  the  interfacial  conditions  to  communicate
information  between  the  fluid  and  structural  solvers.  For  the
discretization  of  the  governing  equations,  conforming  or  body-
fitted  mesh  methods  and  non-conforming  mesh  methods  are
usually employed. The conforming mesh is moving and deforming
in  sync  with  the  structural  boundaries  and  treats  the  interface
conditions  between the  structures  and fluids  as  physical  boundary
conditions. During the simulation, the mesh is dynamically updated
at every time step. Arbitrary Lagrangian–Eulerian (ALE) algorithms
usually  adopt  the  conforming  mesh.  The  non-conforming  mesh
methods,  associated  with  immerse  boundary  methods  (IBMs),
usually treat the interface conditions as constraints imposed on the
governing equations of fluids and structures.

Re37/14
Re

The  advanced  capabilities  of  modern  supercomputers  facilitate
high-fidelity numerical simulations of FSI problems, encompassing
complex  three-dimensional  (3D)  turbulent  flows  and  intricately
coupled structural dynamics. The simulations offer detailed insight
into  the  3D  flow  phenomena,  such  as  shear-layer  separation,
fluctuations  in  hydrodynamic  or  aerodynamic  forces,  and  noise
generations,  thereby  improving  engineering  design.  Most
engineering  FSI  problems  are  subject  to  turbulent  flows
characterized  by  spatial  and  temporal  multi-scale  features.  The
spatial scales can vary from the macroscopic scales of the structural
dimensions  (e.g.,  the  diameter  of  pipelines,  the  chord  length  of
wings  and  the  length  of  a  wind  turbine  blade)  down  to  the
microscopic  Kolmogorov  length  scales,  which  represent  the
smallest  scale of turbulence,  associated with the Reynolds number.
The Navier–Stokes (NS) equations governing the fluid flow can be
solved  by  discretizing  the  equations  into  a  high-dimensional
dynamic  system.  It  is  well-known  that  the  number  of  degrees  of
freedom  of  the  governing  equations  is  proportional  to  [9],
indicating  a  significantly  large  discretized  system  at  high .
Furthermore,  the  structures  immersed  in  the  fluid  may  undergo
complicated  flow-induced  motions  and  deformations,  which
require solving their structural  governing equations.  Therefore,  for
an FSI problem, a coupling between a fluid and a structural solver is
usually  required,  and  the  computational  cost  for  solving  the
coupled  system  can  easily  exceed  10,000  CPU  h  [10]  even  for  a
single fluid and structural  configuration. While parallel  computing
capabilities  of  supercomputers  allow  for  such  simulations,  the
process  remains  costly,  with  substantial  memory  requirements  for
data storage. These challenges impose limitations on the widespread
application of numerical models for solving real-world engineering
issues and for use in industrial settings. 

3    ML as a novel approach
Nowadays, modern ML techniques allow for revolutionary changes
towards  system  identifications  and  dynamic  systems  predictions
across the fields of science and engineering. As a branch of artificial
intelligence,  ML  can  generally  refer  to  the  techniques  to  learn
relationships  among  inputs  and  outputs  from  huge  amounts  of
observation data and experimental data without explicit knowledge
of the underlying physical law.

Mendez  et  al.  [11]  outlined  the  applications  of  ML  in  scientific
and  engineering  problems  outlined  into  five  major  stages:
(1) problems, hypotheses or objectives definition; (2) collecting data
for  training  through  experiments,  simulations  or  observation;
(3)  building  the  architectures  of  the  model;  (4)  defining  loss
functions to be minimized; and finally; (5) selecting an optimization

algorithm  to  update  the  parameters  in  the  architectures  of  the
model  to  achieve  the  minimization  of  the  loss  functions.  ML
methodologies are broadly classified into supervised, unsupervised,
and  semi-supervised  techniques.  Examples  of  relevant  algorithms
are shown in Fig. 2.

Supervised  learning  aims  to  learn  a  function  mapping  the
training  data  to  the  labels.  Classic  supervised  learning applications
which  involve  discrete  labels  include  the  classification  of  images.
Support vector machines (SVMs) [12], random forests [13] and k-
nearest  neighbours  (KNN)  [14]  are  the  several  most  widely
employed  algorithm  for  classification.  When  it  comes  to  the
applications  of  FSI,  supervised  learning  is  used  in  flow  regime
identification. For example, gas–liquid two-phase flow is commonly
observed in  piping systems.  Due to  different  gas–liquid superficial
velocities, various flow forms such as stratified flow, wave flow, slug
flow and annular flow are shown in the pipe flows. Understanding
the multiphase flow and its influences on the structural responses of
the pipes and monitoring and control of the two-phase flow process
requires  accurate  identifications  of  the  flow  patterns.  Supervised
learning  provides  a  novel  approach  to  flow  pattern  identifications
based  on  various  flow  measurement  quantities  such  as  pressure
signals [15] or electrical capacitance tomography images of the flow
[16].  For  continuous  labels,  regression  methods  are  used,  which
approximate  a  function  using  linear  or  quadratic  curves  to  fit  the
continuous  output  data.  There  has  been  special  interest  in  using
regression algorithms in turbulence modelling as reported in works
by Duraisamy et al. [17] and Tracy et al. [18], and optimal problems
such  as  vehicle  aeroacoustics  improvement  [19]  and  aerodynamic
shape optimization [20].

Neural networks (NNs), inspired by biological NNs, are the most
successful  and  well-known  supervised  learning.  For  a  typical
classification task, the central idea of the NN is mapping the input
data (the input layer in the NN) to the label data (the output layer
in  the  NN)  through a  series  of  cell  layers  (the  hidden layer  in  the
NN). An example of the NN architecture is  shown in Fig.  3.  Each
cell  refers to a neuron, which receives weighted input signals from
multiple  neurons  in  the  upstream  layer  and  generates  an  output
signal,  which  is  transferred  to  the  downstream  layer.  Different
numbers  of  neurons  can be  used  to  form each layer  and different
numbers  of  layers  can  be  built.  The  connections  between  the
adjacent layers can be all-to-all (fully connected layer) or partial. In
addition, the mapping between layers can be nonlinear if nonlinear
activation  functions  are  used  in  each  cell.  Different  types  of
nonlinear activation functions enable the flexibility of the NN. The
training  of  NNs  involves  the  backpropagation  algorithms  to

 

Figure 2    Some typical ML algorithms (PCA: principal component analysis).
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iteratively  adjust  the  weights  of  the  NN  to  minimize  the  error
between the predicted output layer and labelled training data. 

4    Applications of ML in FSI
The  applications  of  ML in  FSI  research  can  be  generally  classified
into  three  categories:  feature  detections  and  dynamics  predictions
and  control,  which  will  be  introduced  in  this  section.  The  recent
advances of employing physics-informed NNs in FSI investigations
will be also discussed. 

4.1    Feature detections of FSI
The primary  goal  of  feature  detection  for  FSI  systems  is  to  obtain
the  low-dimensional  manifold  of  the  experimental  data  and
simulations  results.  The  low-dimensional  manifold,  also  known as
“modes” or “latent  space”,  encapsulates  dominant  flow
characteristics  of  the  underlying  FSI  systems.  There  have  been
many  modal  decomposition  techniques  available  in  the  fluid
mechanics community. A typical example is the cylinder wake flow,
which  displays  distinct  shedding  vortices  allowing  for  a  low-
dimensional  representation.  For  modal  decomposition  analysis,  a
variety  of  data  including  space- and  time-resolved  flow  velocities,
pressures  and  rigid  structural  velocities  and  displacements  are
commonly utilized for analysis.

Modal  decomposition  methods  fall  into  two  main  categories
based on their approach to learn these modes. The first one, a data-
driven  approach,  obtains  modes  directly  through  postprocessing
computational fluid dynamics (CFD) simulations and experimental
data,  analogous  to  the  data  training  processes  in  ML.  Both  linear
and nonlinear modal decomposition methods have been employed.
Proper  orthogonal  decomposition  (POD)  and  their  modifications
(such as spectral POD (SPOD) and multiresolution POD) belong to
the  linear  methods.  When  utilizing  the  POD  to  analyze  the  flow
field data, the resulting POD modes contain the fluid and structural
motions that contribute most to the total energy of the FSI system.
Since its introduction by Lumley [21], the POD technique has been
widely adopted to analyze the bluff body flows. Relevant studies can
be  found  in  reports  by  Ilak  et  al.  [22],  Podvin  et  al.  [23],  Podvin
[24],  and  Rowley  et  al.  [25].  For  applications  of  modal
decompositions  on  FSI  problems,  special  treatments  must  be
designed to tackle the moving structure since classic POD analysis

u= (1− IΩf)us+ IΩfuf IΩf(x, t)
x t

u

typically deals with flow data on stationary grids. Liberge et al. [26]
proposed  the  method  for  a  moving  solid  body  by  considering  a
fixed  uniform  grid  containing  the  time-variant  domain  for  both
fluid  and  solid,  and  then  introduce  a  global  velocity  field

 with  an  additional  variable  as  a
function of the coordinate  and the time  to differentiate between
the solid and fluid domains as shown in Fig. 4. Therefore, the POD
modes  are  computed  for  the  global  velocity  field .  Riches  et  al.
[27] used the POD method to analyze the experimental planar PIV
data in the wake region behind a vibrating cylinder while excluding
the moving cylinder itself from the analysis.

SPOD,  developed  by  Towne  et  al.  [28],  Schmidt  et  al.  [29],
Schmidt et al. [30] and later adopted by Nidhan et al. [31] to study
turbulent  stratified  wakes  of  a  disks,  was  conducted  in  the
frequency  domain  and  can  extract  modes  with  monochromatic
frequency content from statistically stationary flows. The multiscale
POD (mPOD), proposed by Mendez et al. [32], introduces spectral
constraints  to  the  energy  optimality  of  the  POD  modes  obtained
from  the  eigenvalue  analysis  of  the  correlation  matrix  of  the  flow
field  snapshots.  The  correlation  matrix  is  first  separated  into
contributions  of  different  scales  using  the  multiscale  resolution
analysis  (MRA).  Then,  the  POD  is  performed  for  each  separate
scale.  Since  the  wake  flow  behind  a  vibrating  cylinder  displays  a
broad  spectrum  of  spatiotemporal  scales  and  unsteady  transient
behaviors,  it  is  difficult  to  describe  the  FSI  system  by  classic
harmonic  decomposition  methods,  such  as  the  fast  Fourier
transform  (FFT).  Instead,  the  properties  of  mPOD  make  it
exceptionally  suitable  for  extracting  coherent  flow  motions  with
non-overlapping  portions  of  the  frequency  spectra  of  the  chaotic
wake flow. It still  preserves the mutual orthogonality of the modes
and ensures a good convergence with a finite number of dominant
modes to represent the entire flow characteristics. In Janocha et al.
[2],  3D  mPOD  was  employed  to  study  the  wake  flow  of  an  FIV
cylinder at three representative reduced velocities corresponding to
the  initial,  upper  and  lower  branches  of  vortex-induced  vibration
(VIV).  The  dominant  flow  features  associated  with  the  vortex
shedding  and  their  super  harmonics  and  the  3D  low-frequency
modulation  of  the  wake  flow  together  with  their  frequency
information were captured by the mPOD analysis.

Dynamic  mode  decomposition  (DMD)  and  its  modifications
(such  as  multiresolution  DMD  and  sparsity-promoting  DMD)
become increasingly popular since it was proposed by Schmid [33]
for analyzing experimental and simulation flow data. Different from
POD modes which represent  the most  energetic  flow features,  the
resulting DMD modes are characterized by their unique oscillation
frequencies and growth/decay rates, which emphasize the dynamics
of each mode. The DMD modes are not orthogonal and this non-
orthogonality  poses  challenges  in  evaluating  the  contribution  and
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Figure 3    An  example  of  FCN.  The  hidden  layer  consists  of  cell  layers  and
there are  neurons in  cell layer. Weights vector  and a nonlinear function

 are used in each cell.

 

IΩf 1 − IΩf

IΩf 
(x, t) Ωf 

IΩf (x, t)Figure 4    A  schematic  description  of  the  variable .  Adapted  from  [26]
with permission ©2010, Elsevier Ltd.
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dominance of these modes in the FSI system since the modes with
very high amplitudes may be damped quickly during their temporal
evolutions.  An  improved  criterion  for  selecting  dominant  DMD
modes was proposed by Kou et al.  [34] and Kou et al.  [35], which
ordered each DMD mode by time integration of its time coefficient.
A  sparsity-promoting  DMD  algorithm  was  introduced  by
Jovanović et al. [36]. The algorithm uses optimization to achieve the
least difference between the mode’s combination and the matrix of
snapshots  and simultaneously  achieve  a  desirable  balance  between
the  quality  of  the  approximation  and  the  number  of  modes
required  to  approximate  the  training  data.  Moreover,  for  more
complicated turbulent flow, high-order DMD was proposed by Le
Clainche  et  al.  [37]  by  considering  time-lagged  snapshots,  which
allowed to exploit the temporal redundancies.

Since the DMD analysis has its superiority in selecting dominant
flow patterns associated with characteristic frequencies, it becomes a
good tool for investigating the unsteady and transient properties of
FSI  systems.  The  characteristic  vortex  shedding  frequencies  and
their  harmonics  were  identified  by  DMD  modes  for  two  couple
cylinders undergoing FIV by Janocha et al. [2]. The most energetic
and  the  most  dynamically  important  mode  associated  with  the
fundamental shedding frequency for single-cylinder configurations
was identified. For the piggyback configuration of the two cylinders
which was commonly observed in submarine pipelines to transport
oil and gas between offshore and onshore production facilities, the
gap  flow  between  the  two  cylinders  was  found  to  be  a  dominant
flow  feature  captured  by  the  leading  DMD  modes.  Also,  it  was
observed  that  for  the  FIV  cylinder  cases,  a  significantly  increasing
number  of  DMD  modes  were  necessary  to  achieve  a  low-
dimensional  representation  of  the  FSI  system  at  the  given  level  of
accuracy  compared  to  the  stationary  cylinder  configurations.
Furthermore,  the  hydrodynamic  forces  acting  on  the  cylinders,
which are important quantities for engineering, are estimated using
the  dominant  DMD  modes  combined  with  a  force  partitioning
method  (FPM)  [38–40]  by  Yin  et  al.  [41].  The  contributions  of
dominant DMD modes to the drag and lift coefficients on the FIV
cylinders were identified.

Moving  beyond  the  conventional  linear  modal  decomposition
techniques,  ML  techniques  are  utilized  to  search  for  a  nonlinear
subspace  of  the  original  high-dimensional  data.  A  NN-based

q
z z= E(q)

q̃ q̃= D(z)

q q̃

h H×H×K
zl−1
ijk

autoencoder shows promising performance in learning a map from
the high-dimensional  state  variable  to  a  low-dimensional  latent-
space representation of  which is  called the encoder as ,
and  the  map,  called  decoder,  back  from  the  latent  state  to  the
predicted  of  the  original  high  dimension  as .  The
architecture  autoencoder  is  trained  to  minimize  the  loss  function
between  and  based on training data either from simulations or
experiments. For deep learning, the encoder and the decoder can be
composed  of  multiple  layers  of  neurons  (multilayer  perceptrons
(MLPs)),  as  shown in Fig.  5,  which  are  called  deep  NNs (DNNs).
Each node in these layers employs nonlinear activation functions to
significantly  compress  useful  information  into  a  nonlinear  low-
dimensional  latent  space.  Apart  from  MLPs,  convolutional  NNs
(CNNs) [42] commonly employed for image processing can be also
used  to  build  the  encoder  and  the  decoder.  A  general  schematic
architecture  of  an  encoder  based  on  CNN  is  displayed  in Fig.  6.
CNNs employ a  hierarchical  structure of  layer  and each layer  of  a
CNN  mainly  consists  of  three  sub-layers:  the  convolutional  layer,
pooling layer  and upsampling layer.  For  the  convolutional  layer,  a
filter  called  kernel  with  a  size  of  is  scanning  on  the
input  signal  at  the  pixel  of  the  input  data  from  the  upstream
layer and this operation can be generally expressed as

zlijk = φ

(
bl
k+

K−1

∑
m=0

H−1

∑
p=0

H−1

∑
s=0

hl−1
m,pszl−1

i+p−C,j+s−C,k

)
(1)

zl−1 zl
hl hl

m,ps bl

bl
k φ

zl
P×P

zl

(1/P)2

In this expression,  and  are the input and output variables
of each layer,  (with components ) and  (with components

)  are  the  weights  and  the  biases  of  the  layer l,  and  is  the
activation function of each layer, enhancing the ability of the model
to capture nonlinear characteristics in the system. Furthermore, the
pooling  operation  compresses  the  data  by  using  an  additional
filter  with  a  size  of  to  reduce  dimensions.  The  pooling
operation can take the maximum value (max-pooling) of the region
of  scanned  by  the  pooling  operator  or  the  averaged  value
(average-pooling)  of  the  scanned  region  by  the  pooling  operator.
Therefore,  the  computational  costs  are  reduced  by  a  factor  of

. Then, the upsampling operation is used to expand the data
dimension  by  copying,  nearest-neighbor  or  bilinear  interpolation.
The  weights  of  CNN  are  obtained  through  optimizations  on  the

 

Figure 5    A schematic view of an autoencoder based on MLPs.
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training data.

Re= 100
r= 2

Murata  et  al.  [43]  and  Fukami  et  al.  [44]  developed  a  modal
decomposition method based on CNN combined autoencoder and
applied it to a flow around a circular cylinder at . A latent
space  with  a  dimension  of  is  obtained.  Compared  with  the
conventional POD method, a lower reconstruction error is achieved
by using the nonlinear hyperbolic tangent activation function. Due
to  the  nonlinear  activation  functions,  CNN  is  suitable  for
processing  the  highly  nonlinear  and  multiscale  turbulence.
Combined with POD, a fully-connected CNN (FCN) was built  by
Guastoni  et  al.  [45]  and used to predict  the turbulence fluctuation
and  reconstruct  the  turbulent  flow  based  on  wall  quantities  in
channel  flows.  The  developed  FCN-POD  model  exhibits  superior
performance  in  predicting  the  nonlinear  interactions  of  the
multiscale flow, the instantaneous fluctuation fields, the turbulence
statistics and the power-spectral densities compared with the POD
analysis. Other architectures such as generative-adversarial-network
(GAN)-based  models  are  used  to  reconstruct  3D  turbulent  flows
from  two-dimensional  (2D)  measurements  by  Yousif  et  al.  [46].
Super-resolution  GANs  (SRGANs)  were  also  applied  to  enhance
the  resolution  of  wall  fields  and  predict  the  velocity  fields  at  wall-
parallel  planes  from  coarse  wall  measurements  in  Güemes  et  al.
[47].

More  recently,  variational  autoencoders  (VAEs),  probabilistic
models based on the variational Bayesian [48], have been developed
to  increase  the  efficiency  of  encoding  the  information  of  high-
dimensional  data.  The  resulting  latent  space  is  a  probability
distribution  rather  than  a  fixed  point,  therefore  enabling  the

r= 5

flexibility  and  continuity  of  the  DNNs  to  generate  new  high-
dimensional  data,  as  shown in Fig.  6.  Furthermore,  a  modified  β-
VAE  variant  developed  by  Higgins  et  al.  [49]  introduces  a
regularization  parameter β in  the  loss  function  to  improve  the
balance between the reconstruction accuracy of the latent space and
the orthogonality of the latent space. As a result, more disentangled
and  interpretable  representations  are  obtained.  By  applying  the
CNN-β-VAE  model  on  the  turbulent  wake  flow  of  a  simplified
urban environment, Eivazi et al.  [50] showed that near-orthogonal
latent  space  with  a  dimension  of  could  reconstruct  the
complex turbulent wake flow behind wall-mounted structures. 

4.2    Dynamics predictions of FSI

ai (t) 0⩽ i⩽ r

ai (t) r

Once  the  low-dimensional  latent  space  of  the  FSI  system  is  built,
the next question is predicting the temporal evolution of the latent
space  and  then  reconstructing  the  future  state  of  the  system.  For
instance, as shown by the low-dimensional representation of Eq. (2)
using the linear modal decomposition, if the temporal coefficient of
each mode  ( ) are known, the state of the FSI system
at any given time can be reconstructed.  Further  quantities  such as
the  loads  imposed by  the  flows on the  structures  and the  induced
structural responses can be predicted from the reconstructed state.
Again, compared with CFD simulations involving the integration of
high-dimensional  dynamic  systems,  the  number  of  unknowns

, ,  is  far  fewer  than  the  original  number  of  degrees  of
freedom,  and  the  dimension  in  solving  the  FSI  systems  is  highly
reduced,  which  results  in  the  term “reduced-order  models”
(ROMs).

 

zμ zσFigure 6    A schematic description of an encoder based on CNN. For VAE, the latent space is a probability distribution with the mean value  and the variation .
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Φ
P= Φ

(
ΦTΦ

)−1ΦT T

P= ΦΦT

a(t) = [a1( t),a2(t), ...,ar(t)]
T

The present ROMs can be generally divided into two categories:
a projection-based model and a data-driven model. The projection-
based  model,  also  known  as  intrusive  ROM,  usually  adopts
Galerkin  projection,  which  orthogonally  projects  the  governing
partial  differential  equations  (PDEs)  of  the  FSI  system  onto  the
subspace  spanned  by  the  spatial  modes  set  using  a  projection
operator ,  where  denotes  the  transpose
operation. If  the modes are orthonormal such as POD modes,  the
projection  operator  is .  Then,  a  low-dimensional  and
simplified system of  can be obtained as

da(t)
dt

= f̃(a(t)) (2)

r
r≪ N
where  the  number  of  degrees  of  freedom  is  reduced  to  (with

). This method has been successfully applied over decades for
various flow problems, including Podvin et al. [23] and Podvin [24]
for  turbulent  channel  flows,  Rowley  [51]  for  compressible  flows,
Liberge et  al.  [26] for flows past  an oscillatory cylinder,  Östh et  al.
[52],  Podvin  et  al.  [53],  and Podvin  et  al.  [54,55]  for  flow over  an
Ahmed body. There are several modifications and optimizations for
the POD mode-based ROM including the balanced POD (BPOD),
which  balances  the  controllability  and  observability  of  control
problems  of  flow  systems  as  used  in  Dadfar  et  al.  [56]  for
attenuating  the  amplitude  of  the  Tollmien-Schlichting  (TS)  waves
inside  the  boundary  layer  of  an  airfoil  and  for  linearized  channel
flow [51].

Kt

g
Ktg(q) = g(F t (q)) F t

F t (q) = q+
r t

0f(q)dt′
g

φλ (q)
λ

Ktφλ (q) = φλ (q)exp(λt)
t

g(q(x, t))≈ ∑N
n=1 exp(λnt)φλn (q(x,0))ψn

ψn

{φλn ,ψn, λn}N
n=1

The data-driven models, also known as non-intrusive ROMs, are
usually  adopted  when  governing  equations  of  the  dynamical
systems are  unknown prior,  especially  in  the  fields  where  physical
laws or the first principles remain unknown, such as neuroscience,
climate sciences, biomedical engineering, and epidemiology. In data-
driven  models,  the  dynamics  of  the  modes  are  identified  directly
from  the  measurement  data.  The  DMD  analysis  belongs  to  this
method.  According  to  Schmid  [33]  and  Bagheri  [57],  DMD  is  an
approximation of the Koopman operator  of dynamical systems.
The  Koopman  operator  is  an  infinite-dimensional  linear  operator
that  acts  on  the  measurement  function  of  the  flow  fields  to
predict  the  future  state  as ,  where  is  defined
as  the  time-forward  map ,  which  is
determined by the dynamical system. The measurement function 
can then be  linearly  approximated by the  eigenfunctions  of
the operator along with their exponential time dependence , which
satisfies  the  eigenrelations  of .  Finally,  a
low-dimensional representation of the flow state measurement at 
can  be  expressed  as ,
where  is denoted as Koopman modes. According to Sharma et
al.  [58],  the  DMD  can  be  used  to  obtain  the  triple  sequences

 and dynamics of the system.

f(q(t)) q
f(q(t))≈ θ(q(t))ξ

θ(q)
q

θ(q) = [Iq1q2...qd...sinq...]

Nevertheless,  the  DMD  method  is  still  faced  with  challenges
brought  by  strongly  nonlinear  dynamic  system.  Recently,  sparse
identification  of  nonlinear  dynamics  (SINDy)  has  been  developed
by  to  overcome  the  challenges  of  dealing  with  the  strong
nonlinearity of dynamical systems. In the framework of the SINDy
method,  the  right-hand  side  of  the  original  dynamical  system

,  which  is  a  nonlinear  function  of  the  state  variable ,  is
approximated by a linear relationship as , where
the matrix  is a library of some candidate nonlinear functions
of  the  coordinates  of  the  systems ,  such  as

 to  incorporate  the  nonlinearity.  The

ξ
ξk = argminξ′k

∥∥∥Q̇k−θ(Q)ξ′k
∥∥∥
2
+ λ∥ξk∥1

Q̇k k Q̇ Q
∥...∥1 ∥...∥2 l2 l1

λ

q̇= θ(q)ξ

a(t)

columns  of  the  coefficients  matrix  can  be  determined  using  a
convex  sparse  regression: 
where  is the th column of ,  is the snapshots matrix of the
training data,  and  are the -norm and -norm of the
matrix,  respectively,  and  is  a  sparsity-promoting  penalty
parameter.  Then,  the  original  dynamical  system  can  be
approximated  by  using  the  library  as .  For  the
applications  of  fluid  dynamics,  the  SINDy  algorithm  is  usually
combined  with  a  dimensional  reduction  as  prior.  For  example,
Kaptanoglu et al.  [59],  Loiseau et al.  [60],  and Callaham et al.  [61]
performed  the  POD  analysis  and  then  used  the  SINDy  to  predict
the  temporal  evolution  of  the  POD  coefficients  for
magnetohydrodynamics,  cavity  flows,  mixing  layer,  and  cylinders
wake  flows.  Fukami  et  al.  [62]  used  CNN  based  autoencoder  to
map the  wake  flow data  behind a  cylinder  onto  a  2D latent  space
and adopted the SINDy to predict the dynamics of the latent space
and reconstruct the predicted flows at future time steps.

a(t)
Re

X= [u(x, t1),u(x, t2), ...,u(x, tN )]

Z= [z( t1),z(t2), ...,z(tN )]

[z( t1),z(t2), ...,z(tN )]
[z( t2),z(t3), ...,z(tN+1 )]

Furthermore,  recurrent  NNs  (RNN),  as  a  popular  tool  for
processing  sequential  data  such  as  video  images  and  natural
language,  are  specifically  appropriate  for  predicting  the  temporal
evolution  of  FSI  systems.  However,  RNNs  have  the  problems  of
vanishing gradient and cannot learn long-term dependencies in the
data  sequences.  Therefore,  Hochreiter  et  al.  [63]  developed  long
short-term memory (LSTM) networks, where a gating mechanism
controls the dynamics of the recurrent connections, to mitigate the
issue  of  vanishing  gradient  and  predict  the  long  temporal
dependencies.  Combining  with  the  POD  analysis,  LSTM  can  be
also used to predict the temporal evolution of the POD coefficients

 as shown in Nazvanova et al.  [64] for a VIV cylinder at high
. A predictive model in combination of CNN and LSTM can be

developed  to  predict  the  temporal  evolution  of  the  unsteady  flow
over  a  side-by-side  cylinder  by  Bukka  et  al.  [65]  and  Gupta  et  al.
[66, 67]. A framework of this prediction method is shown in Fig. 7.
The  snapshots  of  flow  fields  are
used as the training data and are compressed into low-dimensional
latent  space  states  of  using  the  encoder.
Then,  LSTM is  built  to  model  the  temporal  evolution  of  the  low-
dimensional  states  advancing  from  to

. Finally, the full flow states at the future time
instants  can  be  reconstructed  from  the  low-dimensional  latent
states.  It  should  be  mentioned  that  this  architecture  combining
CNN and LSTM could be generalized to any FSI system.

Transformer  NNs,  an  advanced  sequence-to-sequence
architecture,  significantly  improve  the  efficiency  of  processing
natural  language  [68, 69]  and  can  be  also  adopted  for  temporal-
dynamics  prediction  of  the  latent  space.  The  transformer  NN
architecture consists of an encoder and a decoder between the input
and output sequences and uses the attention mechanism to extract
global  dependencies  between  the  two  sequences.  Wang  et  al.  [70]
and  Solera-Rico  et  al.  [71]  employed  a  CNN-β-VAE  model  to
encode  the  domain  name  system  (DNS)  data  of  turbulent  flow
around a wall-mounted square cylinder and two collinear flat plates
(Fig. 8). Then, the transformer to predict the temporal-dynamics. It
showed  that  the  chaotic  evolutions  of  the  latent  space  states  were
predicted  with  a  more  satisfactory  accuracy  compared  with  the
LSTM model. 

4.3    Control of FSI
Upon  gaining  a  physical  understanding  and  prediction  of  the  FSI
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dynamics,  the  subsequent  crucial  problem  is  how  to  develop
efficient  control  strategies  for  FSI.  Especially  for  engineering
applications, there exist multiple control objectives. For instance, in
ocean engineering, slender structures like marine risers are prone to
fatigue-related  damage  due  to  large-amplitude  flow-induced-
vibrations,  which  requires  control  methods  to  suppress  the
vibrations. On the other hand, for renewable energy such as wave-
energy converters [72] and hydrokinetic energy harnessing systems
such  as  VIV aquatic  clean  energy  (VIVACE)  converters  [73],  it  is
necessary  to  enhance  the  structural  response  so  as  to  increase  the
power transfer and the utilization efficient.

Traditionally,  FSI  control  is  achieved  via  passive  control
dependent  on  modifications  of  structural  geometries,  which  lacks
adaptability and scalability under various environmental conditions.
Therefore,  active flow control emerges as a hotspot in FSI control.
The  active  control  uses  external  control  inputs  such  as  structural
self-rotating,  surface  morphology,  or  opposite  control  forces.  As  a
typical active control,  close-loop or feedback control can provide a
rigorous mathematical plant to achieve an efficient way by entering
control  signals  through  actuators  while  conducting  real-time
systems  estimation  using  sensors.  The  FSI  control  always
encounters  the  problems  of  nonlinearity  and  high-dimensionality
due  to  the  nature  of  FSI  systems.  Thus,  a  linearization  of  the
governing  equations  is  always  performed  through  either
linearization  around  the  system  trajectory  or  the  mean  systems
state.  Some examples of  this  method can be found in Semeraro et
al. [74] and Semeraro et al. [75]. Nevertheless, in real industries, it is
difficult  to  mathematically  derive  simple  linear-model-based
control  schemes  neglecting  nonlinearity,  especially  when  there  are
complicated couplings between fluids and structures. Furthermore,

multiscale  features  such  as  turbulence  pose  difficulties  to  control
problems.  These important  physical  phenomena cannot be simply
incorporated  into  the  first-principle  governing  equations  of  the
control  systems.  Fortunately,  ML  and  deep  learning  [76]  provide
new opportunities for FSI control.

ot at rt

ot
rt

Nowadays,  reinforcement learning (RL),  which has  been widely
applied  in  automated  driving  and game playing,  becomes  popular
in FSI control. In general, the framework of RL control regards the
numerical  simulations  or  experiments  of  any  FSI  system  as  an
“environment” and  trains  the  control “agent” by  interacting  with
this  environment  through  three  channels:  the  observation  signals

,  the  action ,  and  the  reward .  The  observation  signals  are
usually  pointwise  measurements  of  flow  quantities  such  as  flow
velocities  and  pressures  in  the  flow fields.  The  action  refers  to  the
active control signals such as suction or blowing of the synthetic jet
flows placed on the structure surfaces. The reward is usually related
to  the  control  objective.  For  example,  for  the  common  drag
reduction control  problems of  bluff  bodies as  shown in Rabault  et
al.  [77],  Tang et  al.  [78],  Varela et  al.  [79],  and Ren et  al.  [80],  the
reward can be the time-averaged drag coefficient of the structures.
A schematic of the RL framework is shown in Fig. 9. For enhancing
heat  transfer  in  energy  and  power  engineering,  the  reward  can  be
the  time-averaged  integral  of  the  local  temperature  gradient  along
the  structure  surfaces  as  reported  in  Ren  et  al.  [80].  The  agent  is
usually  a  NN  trained  to  seek  a  control  strategy  to  determine  at
based on  at the current time step, aiming to maximize the reward

.
RL  can  be  generally  divided  into  model-free  and  model-based

methods.  The  model-free  method  is  the  most  commonly  used
algorithm for FSI control problems, which can be further classified
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Figure 7    A schematic view of the CNN combined LSTM prediction method of FSI systems and the cell structure of the LSTM.
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into  value-based  (i.e.,  the  classic  Q-learning)  and  policy-based
methods. As summarized by Garnier et al. [81], compared with the
valued-based  methods,  the  policy-based  methods,  also  known  as
policy  gradient  methods,  have  advantages  of  dealing  with  high
dimensional action spaces and have better stability and convergence
properties.

π (at|ot)
at ot
R(t) = ∑i>tγi−trt γ

In Rabault et al. [77], a deep RL (DRL) technique was developed
combining with  NNs.  The aim of  the  developed DRL is  to  obtain
the  optimal  policy ,  which  is  described  as  the  probability
distribution  of  action  given  the  observation  for  maximizing
the  cumulative  reward ,  where  is  the  discount
factor.  The  proximal  policy  optimization (PPO),  one  of  the  policy

 

βFigure 8    A schematic view of the CNN- -VAE model combined with the transformer prediction method of FSI systems.
 

Figure 9    Schematic of the RL loop framework. Agent,  NN. The environment usually refers to numerical simulations or experiments.  The synthetic jet flow rates and
plasma actuators are commonly used as action. Reduction in the time-averaged hydrodynamic forces is acting as the reward. The pointwise measurements of the flow
velocity are usually the observations.
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Θ
gradient methods, was employed to learn the parameter set denoted
as  of NN such as to maximize the expected reward given as

Rmax = maxE
[
∑H

t=0
R(st) |πΘ

]
(3)

πΘ

Θ st
ot t

Θ

where  is  the  policy  represented  by  NN with  the  parameter  set
, and  is the system state (i.e., the flow state) represented by the

observation  at the time . The maximization is achieved by using
the gradient descent algorithm on the parameter set .

Re= 100

Rabault  et  al.  [77]  applied  the  DRL  to  learn  an  active  control
strategy  and  obtain  the  mass  flow  rates  of  the  synthetic  jet  on  a
cylinder surface subjected to a laminar flow at . The vortex
shedding  was  suppressed,  and  the  drag  was  reduced  by  8%.  Also,
the  lift  and  drag  fluctuations  were  also  significantly  reduced  at  a
series of Reynolds number ranging between 60 and 400 as reported
in Tang et al. [78]. Apart from control by using the surface jet flows,
the  DRL-based  drag  reduction  was  also  achieved  using  rotational
oscillations  of  a  cylinder  by  Han  et  al.  [82].  Two  small  counter-
rotating  cylinders  located  at  the  back  of  the  main  cylinder  were
used in studies by Xu et al.  [83] and Fan et al.  [84] to stabilize the
vortex  shedding,  and  the  rotating  speed  was  determined  by  the
artificial neural network (ANN) combined DRL. The linear stability
of the wake flow behind a cylinder confined between two plates was
investigated,  and  the  vortex  shedding  was  stabilized  using  RL
control strategy by Li et al. [85]. Yousif et al. [86] developed a DRL
control  strategy combined with PPO to control  the  flow around a
square  cylinder  using  a  plasma actuator  as  the  control  signal.  The
lift  and  drag  coefficients  were  reduced  and  the  aerodynamic
stability of the cylinder was enhanced. 

4.4    Physics-informed NNs (PINNs) of FSI
Modern  ML  and  deep  learning  techniques  are  primarily  data-

driven,  relying  on  extensive  datasets  to  extract  physically
meaningful  patterns.  However,  in  practical  experiments  and  real-
world industrial  applications,  observational and measurement data
are  often  limited  and  sparse,  therefore  constraining  the  predictive
capacity  of  NNs trained upon such data.  Furthermore,  despite  the
broad  applications  of  these  techniques,  the  core  models  such  as
MLPs  and  CNNs  typically  lack  interpretability  and  explainability.
Given  the  fact  that  almost  all  investigated  dynamic  systems  in
science  and  engineering  are  governed  by  first-principle  physical
laws, these challenges motivate the development of PINNs by Raissi
et al. [87] for solving PDEs using NN.

(x, t)
u(x, t)

ut+N(u) = 0 N(u)
u(x, t)

u(x, t)

LPDE = ∑Ne
i=1|ui,t+N(ui)|

2 Ne

In the framework of PINN, different from traditional numerical
methods for solving PDEs such as the finite difference method and
the  finite  volume  method,  the  automatic  differentiation  (AD)  is
employed  in  PINN  to  represent  all  the  differential  operators  in
PDEs  instead  of  discretization  methods.  Therefore,  there  is  no
requirement  for  computational  meshes.  The  temporal  and  the
spatial  coordinates  are  regarded  as  the  inputs,  and  the
solution  state  vector  of  the  underlying  governing  PDE
represented  as  (  includes  all  linear  and
nonlinear  differential  operators  regarding )  is  the  output.  A
typical PINN usually consists of a DNN built by an MLP mapping
the  inputs  of  the  spatial  and  temporal  coordinates  to  the  solution

 of the PDE. The weights and biases of the MLP are obtained
through  the  training  process  for  minimizing  the  loss  function,
which consists of both supervised loss and residual of the governing
equations. The supervised loss refers to the differences between the
predicted solutions and the available training data in sample points
at  the  domain  boundaries  and  inside  the  domains.  The  physical
constraints  are  primarily  incorporated  as  the  residual  of  the
governing  PDEs  represented  as  at 
points  (known as  collocation points)  for  which the  residual  of  the
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Figure 10    Schematic of a PINN. An FCN uses time and space coordinates ( ) as inputs to solve the multi-physics solutions including the flow data ( ) and also
structural responses ( ). The spatial and temporal derivatives of the solution quantities with respect to the inputs are calculated using AD of the FCN and then used to
formulate the residuals of the governing PDE and supervised loss inside the computational domain and at the boundaries in the loss function. The parameters of the FCN
are trained by minimizing the loss function.
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governing  PDEs  is  calculated.  A  framework  of  a  typical  PINN  is
presented  in Fig.  10.  It  should  be  mentioned  that  AD  combined
with the chain rule is used to compute the gradients of the solution
variables with respect to the spatial and temporal coordinates in the
governing PDEs in a forward manner and update the parameters of
NN in the backpropagation process.

Since  it  was  introduced  by  Raissi  et  al.  [87],  PINN  has  been
successfully  applied  for  both  forward  and  inverse  problems
governed  different  types  of  PDEs  from  one-dimensional  (1D)
Burges’ equations  to  3D  NS  equations  for  fluids.  The  forward
problems  aim  at  predicting  the  PDE  solutions  at  sample  points
while the inverse problems identify and infer critical parameters or
boundary  conditions  of  the  PDEs  based  on  the  training  data.
PINNs showed good performance in solving the Reynolds-averaged
NS (RANS) equations for incompressible turbulent boundary layer
flows  and  turbulent  flows  over  a  NACA4412  airfoil  and  periodic
hills.  The  Reynolds  stress  is  well  predicted  by  using  PINN
compared with simulation results. Classic bluff body flow problems
such  as  2D  laminar  flows  around  a  circular  cylinder  were  also
considered  in  Raissi  et  al.  [87],  Rao  et  al.  [88],  Jin  et  al.  [89],  and
Yan et al. [90]. 3D flows were also reconstructed using limited data
combined  with  PINN  by  Cai  et  al.  [91]  and  Xu  et  al.  [92].  In
addition,  PINN  has  become  a  popular  tool  for  high-resolution
reconstruction  of  flow  data  from  low-resolution,  incomplete  and
noisy  measurements  as  shown  in  Eivazi  et  al.  [93].  For  FSI
problems  involving  moving  structure  surfaces,  the  motions  of  the
structures  should  also  be  incorporated  in  the  governing  NS
equations.  Typical  examples  can  be  found  in  Raissi  et  al.  [94],
Cheng  et  al.  [95],  Bai  et  al.  [96],  and  Tang  et  al.  [97].  In  these
applications for a VIV cylinder, the NS equations in the coordinate
system attached to the vibrating cylinder were considered by adding
the acceleration of  the cylinder  in the equations.  The lift  and drag
forces  of  the  cylinder  can  be  predicted  using  the  sparse  velocity
measurements combined with the PINN. 

5    Challenges
Despite  the  broad  applications  of  ML  in  FSI  and  other  flow
problems,  its  development  has  predominantly  been  within  the
realm of model studies, which means that the performances of ML
are  typically  evaluated  using  flows  over  simple  geometries  such  as
cylindrical  and  spherical  structures  at  low  Reynolds  numbers  and
other canonical flow problems, such as channel flow, pipe flow, and
boundary  layer  flow.  There  is  a  noticeable  shortage  in  the
availability  of  ML  capable  of  dealing  with  complicated  real-world
FSI problems in ocean engineering and industrial settings including
wind  turbines,  subsea  pipelines,  and  vibrating  and  flapping
hydrofoils.  The  primary  challenges  and  potential  solutions  for
applying ML to these FSI problems are outlined in this section. 

5.1    Interaction between structures and fluid flows
For typical FSI problems, strong nonlinear coupling exists between
the  structural  responses  such  as  motions  and  deformations  of
structures and the coherent flow structures. A critical phenomenon
within these interactions is the synchronization which occurs when
the  natural  frequency  of  the  structure  matches  the  characteristic
frequency of the coherent flow structures,  such as vortex shedding
frequency.  This  synchronization,  often  referred  to  as  a  lock-in
regime,  can  induce  significantly  large  structural  displacement
amplitude  and  a  complex  interchange  of  energy  between  the

structure and the surrounding flow, which is  highly dependent on
timescales  and  phase  alignment  between  the  structure
displacements  and  flow-induced  forces  [40].  A  deforming
computational  mesh  in  a  body-fitted  frame  is  typically  used  for
feature  detection  since  decoupling  the  moving  body-fitted  frame
from  the  flow  is  necessary.  Existing  ML  for  FSI  often  deals  with
structures with prescribed motions and some examples can be seen
in  Menon  et  al.  [98, 99].  In  these  cases,  the  deformation  of  the
moving  mesh  is  presupposed.  When  it  comes  to  structures  that
move  freely  within  a  fluid,  the  focus  has  primarily  been  on  thin
structures, as discussed in Stankiewicz et al. [100]. Furthermore, to
build  the  Galerkin-projection  ROM,  the  structural  motions  and
deformations  based on ALE were  considered by  Stankiewicz  et  al.
[100]. However, applying ALE to FSI systems with large structural
displacements proves challenging, highlighting a requirement of an
efficient  ML  methodology  that  can  accurately  capture  and  predict
the  nonlinear  FSI  interaction  with  large  amplitude  motions  and
high unsteadiness of associated flow-induced forces. 

5.2    Strong nonlinearity of the dynamical systems
One of the most important features of the FSI systems lies in their
strong  nonlinearity,  making  their  analysis  particularly  challenging.
Current methods to analyse nonlinear systems usually approximate
the nonlinear system with linear system in a small  neighbourhood
of  a  fixed  point  of  a  periodic  orbit,  such  as  classic  linear  stability
theory [101], allowing for the applications of well-established linear
analysis  techniques  and  control  schemes.  However,  this  linear
approximation can only discern local characteristics of the original
systems  and  fails  to  capture  global  nonlinear  characteristics.  The
periodic  or  quasi-periodic  behaviour  of  nonlinear  systems  can  be
characterized  using  the  DMD  modal  analysis  based  on  the
Koopman  operator  [33].  The  key  assumption  of  DMD  modal
analysis is that while the dynamical system might be nonlinear, the
evolution of the observables under the Koopman operator is linear.
Despite  of  the  frequency  information  provided  by  DMD,  this
approach  encounters  limitations  when  faced  with  intricate
nonlinear  phenomena  often  seen  in  turbulence:  transients,
intermittency,  and  broadband  spatial  and  temporal  scale
distributions. These features cannot be fully captured using only the
linear  expansions of  Koopman modes.  While  CNN and DNN are
capable of  incorporating nonlinearity  within the latent  space,  their
utilization  hinges  on  the  nonlinear  properties  of  activation
functions  at  each  node  in  the  hidden  layers.  The  absence  of
correlations  with  the  nonlinear  aspects  of  FSI  remains  a  crucial
aspect,  and  these  correlations  are  crucial  for  developing  ROMs
which not only simplify the representation of complex FSI systems
but also illuminate the fundamental mechanisms. 

5.3    Unresolved flow physics
In  ocean  engineering,  flows  are  characterized  by  their  Reynolds
number, a critical parameter that determines different flow regimes.
As  elucidated  in  classical  turbulence  theory,  an  increase  in  the
Reynolds  number  leads  to  a  proliferation  of  spatial  and  temporal
scales within the flow and subsequently generates complex motion
patterns  of  structures  immersed  within  these  flows  [40].  ML
techniques, particularly feature detection algorithms, provide a way
to  decrease  the  dimensionality  and  reduce  the  complexity  of  the
problems.  Nevertheless,  one  of  the  consequences  is  that  only
dynamics  with  large  spatiotemporal  scales  is  retained,  and  small-
scale  dynamics  becomes  unresolved.  However,  these  small-scale
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unresolved motions may be crucial to the kinetic energy dissipation
process  of  the  systems.  For  the  evolvement  of  the  dynamical
systems,  this  energy  dissipation  is  important  for  maintaining  the
realistic  energy  cascade  in  the  flow  and  system  stability,  which
should be carefully considered in the ML techniques. This concept
is in resemble to the turbulence closure models when carrying out
RANS  or  large  eddy  simulations  (LES)  and  the  POD  projection-
based models by Podvin et al. [23] and Podvin [24]. 

5.4    Unidealized  and  realistic  structural  shapes  and
configurations
The limited success of ML applications in addressing real-world FSI
problems in  industries  can be  largely  attributed  to  the  unidealized
structural  shapes instead of simplified bodies in academic research
and their  complicated configurations  when multiple  structures  are
presented.  For  example,  in  offshore  engineering,  there  are  various
forms of wind turbine designs, each presenting unique FSI patterns
due  to  distinct  wake  flow  interactions.  In  subsea  engineering,  the
proximity  of  risers  and  piggyback  pipelines  introduces  intricate
vortex  shedding  patterns,  increasing  difficulty  in  applying  ML  to
such systems. Attempts to address these problems can be found in
Miyanawala et al. [102] and Yao et al. [103]. However, they are still
restricted to bodies with idealized shapes. 

5.5    Hydrodynamic or aerodynamic loads on structures
Accurately  predicting  unsteady  loads  with  high  amplitudes  on
structures  in  engineering  applications  is  crucial  for  ensuring
structural  integrity,  stability,  and  prolonging  fatigue  life.  Typically,
these  loads  are  determined  in  FSI  simulations  by  integrating
pressure and shear stress data collected on the surfaces of structures.
However,  acquiring  flow  quantities  directly  from  these  surfaces  is
challenging  in  real-world  scenarios,  and  installing  load
measurement devices might undesirably influence the surrounding
flow  field.  An  alternative  strategy  involves  estimating  the  loads
directly  from  the  surrounding  flow  information,  leveraging  the
momentum transfer  between  the  moving  structures  and  the  fluid.
Relevant estimation methods such as FPM can be found in Menon
et  al.  [39],  Tong  et  al.  [104],  Yin  et  al.  [41],  and  Nazvanova  et  al.
[64].  However,  in  applications  of  ML,  it  is  still  unknown  how  to
relate the flow features encoded in the latent space to the loads on
the  structures  and  how  individual  flow  feature  and  their  mutual
interactions contribute to the loads. Current methods for estimating
loads depend heavily on having complete and spatially continuous
data on surrounding flow fields. However, obtaining such extensive
flow  field  measurements  in  practical  scenarios  is  often  infeasible
due to the prohibited costs associated with experimental setups and
data storage. This raises the challenge of how to effectively use the
limited  and  sparse  available  data  to  estimate  the  complete  flow
information,  and  subsequently,  the  loads,  particularly  in  FSI
systems. 

6    Summary and recommendations
This  paper  presents  a  comprehensive  review  of  the  latest
developments of ML techniques for FSI. Traditional methodologies
of  FSI  research are  briefly  overviewed and then ML is  introduced.
Specific applications of ML on FSI problems are generally classified
into  three  primary  directions  and  relevant  techniques  and
algorithms  are  discussed.  The  subsequent  section  focuses  on  the
existing challenges in applying ML in FSI. Some recommendations

for current and future development are outlined as follows. 

6.1    Overcoming the challenges of moving structures
In  CFD  simulations,  accurately  capturing  moving  structures  and
their  interaction  with  fluid  flows  presents  challenges.  This
complexity  arises  because  these  simulations  necessitate  additional
computations for the structural responses and often pose difficulties
with stability issues. When it comes to experimental investigations,
moving structures introduce uncertainties in the measurement data.
The majority of ML applications in FSI have focused on flows over
stationary  structures.  The  traditional  view  of  flow  problems  is
mostly based on Eulerian perspective, where a fixed reference frame
and  fixed  computational  mesh  are  employed.  However,  for  FSI
systems,  there  is  a  compelling  case  for  adopting  the  Lagrangian
description,  where  the  movement  of  specific  material  points  is
followed in a moving reference frame. It  is  crucial  to explore both
descriptions  and  their  respective  merits  within  the  framework  of
ML for specific FSI problems. 

6.2    Incorporate physical constraints
Despite  the  proliferation  of  deep  learning,  RL,  and  artificial
intelligence, their primary applications have been in the fields such
as  business,  finance,  climate  and  neuroscience,  characterized  by
“soft  constraints”.  These  fields  often  deal  with  probabilistic  and
flexible  frameworks.  In  contrast,  disciplines  such  as  physics,
chemistry, civil, offshore, and mechanical engineering are governed
by “hard constraints” rooted in physical  laws. This means that the
developed  ML  techniques  should  inherently  respect  the
fundamental physical laws governing FSI systems. Although various
PINN  architectures  incorporated  the  governing  PDEs  into  the
training process, more physical laws encompassing momentum and
energy  conservations,  divergence-free  criteria  for  incompressible
fluid  velocity  fields,  no-slip  boundary  conditions  on  structural
surfaces,  consistency  between  pressure  and  velocity  fields,  and
strain compatibility  of  elastic  structures  should also be considered.
Furthermore, there are still limitations when applying PINN in FSI
investigations. The predominant focus of PINN applications on FSI
problems  is  on  steady-state  flow  predictions  such  as  Eivazi  et  al.
[93],  Hanrahan  et  al.  [105],  and  Patel  et  al.  [106].  The  prediction
ability  of  PINNs  for  flows  with  unsteady  characteristics,  even  as
elementary  as  vortex  shedding  at  low  Reynolds  number  remains
questionable as reported by Chuang et al. [107]. The unsteady flow
decays to a steady flow if there are no available training data, which
indicates  high  numerical  dispersion  and  diffusion  of  PINN.  Thus,
how  to  effectively  address  and  reasonably  incorporate  the “hard
constraints” in FSI systems is an important research direction. 

6.3    Bridge  the  gap  between  mathematical  tools  and  real
industrial applications.
The  development  of  ML  is  heavily  reliant  on  mathematical
methodologies.  A  central  consideration  in  both  science  and
engineering is how to translate these mathematical theories to real-
world  applications,  and  conversely,  abstracting  complex  industrial
situations  into  fundamental  elements  for  mathematical  modelling.
This  dual  process  highlights  the  needs  to  bridge  the  gap  between
the  mathematical  tools  for  simplified  and  idealized  FSI  problems
and  their  practical  implementation  in  ocean  and  offshore
engineering.  To  effectively  address  this  gap,  it  is  important  to
develop  an  interdisciplinary  approach  that  merges  insights  and
methodologies  from  diverse  fields  such  as  applied  mathematics,
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ML, big data analytics, control theory, and structural mechanics. By
integrating  knowledge  from  these  areas,  the  development  of  ML
models can be significantly enhanced, not only with increasing their
accuracy in predicting and solving complex FSI problems but also
increasing transfer ability. 
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